1005

Hydrogen Bonding in Thiosemicarbazide

By Giovanni Dario Andreetti, Paolo Domiano, Giovanna Fava Gasparri, Mario Nardelli and Paolo Sgarabotto

Istituti di Chimica Generale e Strutturistica Chimica della Università, Parma, Italy

(Received 21 July 1969)

The crystal structure of thiosemicarbazide, previously determined from photographic data, has been redetermined using intensity data collected by means of a four-circle Picker diffractometer at room temperature. The analysis has been valuable in giving a direct determination of the hydrogen atom positions. The final R = 2.4%. Earlier hypotheses on the hydrogen bonding are confirmed.

Introduction

In a recent paper (Domiano, Fava Gasparri, Nardelli & Sgarabotto, 1969, DGNS) the crystal-structure analysis of thiosemicarbazide, carried out by photographic methods, was reported (final R=9.9%). The positions of the hydrogen atoms were postulated from consideration of the hybridization of the nitrogen atoms and the packing interactions, no direct determination of position being possible from the final difference synthesis. In order to obtain a more accurate structure analysis, suitable for the location of the hydrogen atoms the hydrogen atoms methods.

Experimental and refinement

Cell parameters,* as determined by least-squares methods from 19 2θ values in the range $16 \cdot 2^{\circ} \le 2\theta \le 42 \cdot 7^{\circ}$ using Zr-filtered Mo $K\alpha_1$ radiation, are (at $24 \cdot 0^{\circ}$ C):

a =4.934 ± 1, b=7.330 ± 1, c=8.396 ± 1 Å α =44.39 ± 1, β =83.23 ± 1, γ =76.99 ± 1°, Z =2, F(000)=96, V=206.5 Å³, D_x=1.49 g.cm⁻³; μ =1.44 cm⁻¹ (Mo K α)

Space group: $P\overline{1}$ (from structure determination).

It must be pointed out that these improved cell parameters show some relevant differences with respect to those given by DGNS, particularly for the *b* constant.

A very well developed crystal approximately $0.20 \times 0.10 \times 0.10 \text{ mm}^3$ was mounted on a Picker diffractometer equipped with a pulse-height analyser and the intensity data were collected using Mo $K\alpha$ ($\lambda = 0.71069$ Å) radiation and the $\omega - 2\theta$ scan method. Of a total of 936 measured reflexions ($2\theta_{\text{max}} = 55^{\circ}$), 100 were coded as 'unobserved', having $I_{hkl} < 2\sigma_I$ (σ_I from counting statistics) and were not used in the structure refinement. No corrections were made for absorption or for anomalous dispersion.

Starting with the DGNS set of parameters for nonhydrogen atoms, the structure was refined first by means of three cycles of full-matrix least squares (all unit weights) with isotropic temperature factors to R = 10.7%, then by means of two cycles with anisotropic thermal parameters to R = 5.7%. Then from a ΔF map five well defined peaks with heights between 0.69 and 0.54 e. Å⁻³ over a maximum background of 0.3 e. Å⁻³, were found, giving good values for the N-H bond distances. The refinement was then carried out with all the atoms but refining only the heavy ones, and after two cycles the R index was 3.7%. A further improvement was obtained after two more cycles using weights ($w = 1/\sigma_F^2$) and refining also the hydrogen atoms isotropically; the final R value achieved in this way was 2.4% ($R_w = 2.3\%$). The function minimized was $\sum w \Delta F^2$ and the expressions used for R and R_w were: $R = \sum |\Delta F| / \sum |F_o|$ and $R_w = \{\sum w \Delta F^2 / \sum w F_o^2\}^{1/2}$. The average shift/error ratio in the final cycle was 0.10 and the maximum value 0.54; the final value of the goodness of fit was 0.79. In Table 1 the final atomic parameters obtained in the present refinement are compared with those reported by DGNS. Table 2 gives the rootmean-square displacements and their orientations with respect to an orthogonal cartesian system of axes referred to the crystal axes by the matrix (0.2027, -0.0468, -0.0132/0, 0.1400, -0.1416/0.0, 0.1706). The thermal ellipsoids in the plane of the molecule are shown in Fig. 1. It must be pointed out that, in spite of the different methods followed in data collection and refinement, the agreement between corresponding parameters is quite good, as is also shown in Table 1. In Table 3 observed and calculated structure factors are compared. The atomic scattering factors used are those of Cromer & Waber (1965) for S, N, C, and those of Stewart, Davidson & Simpson (1965) for hydrogen. All the calculations were carried out on an IBM 7094-7040 direct coupled system, using the programs written or adapted by Stewart (1964).

Discussion

As shown in Table 4, bond distances and angles in the molecule agree quite well with those of the previous

^{*} The same orientation used in the previous paper (DGNS) is maintained. The transformation matrix from our cell to the Buerger's all acute 'reduced cell' is $\overline{100/01}1/0\overline{10}$.

analysis (DGNS), the maximum differences being 4σ for the C-S bond and 7σ for the S-C-N(1) angle. These differences are mainly due to the unit-cell parameters used in the analyses, since the fractional coordinates do not differ significantly.

The assumptions about the positions of the hydrogen atoms made by DGNS are confirmed. In Table 5,

Dessant word

N-H bond distances and angles involving hydrogen atoms are listed together with N-H values corrected for thermal motion following Busing & Levy (1964); these last values agree quite well with those listed by Hamilton & Ibers (1968). As postulated by DGNS, H(3,1) and H(3,2) are practically symmetrical with respect to the mean molecular plane, so that the lone

Previous work (DGNS)

Table 1. Final atomic fractional coordinates

		Present v	VOLK					rievious work (DOINS)				
x/a	(σ)	y/b	(σ)	z/c	(σ)	x/a	(σ)	y/b	(σ)	z/c (σ)		
-0.00142	(8)	-0.12576	(8)	0.82102	(6)	-0.0013	(3)	-0.1260	(1)	0.8212 (1)		
0.25952	(27)	0.21177	(27)	0.73844	(21)	0.2607	(10)	0.2119	(2)	0.7391 (4)		
0.26454	(24)	0.22024	(23)	0.46188	(18)	0.2646	(10)	0.2203	(2)	0.4604 (5)		
0.42506	(30)	0.41955	(27)	0.32852	(21)	0.4259	(11)	0.4193	(3)	0.3283 (4)		
0.18558	(25)	0.12088	(25)	0.66364	(20)	0.1836	(10)	0.1211	(3)	0.6616 (4)		
0.1943	(30)	0.1578	(28)	0.8659	(26)							
0.3609	(31)	0.3293	(29)	0.6281	(24)							
0.2090	(28)	0.1735	(27)	0.4082	(23)							
0.3315	(34)	0.5584	(35)	0.1938	(30)							
0.5742	(37)	0.3539	(34)	0.3072	(28)							
	x/a -0.00142 0.25952 0.26454 0.42506 0.18558 0.1943 0.3609 0.2090 0.3315 0.5742	x/a (σ) -0.00142 (8) 0.25952 (27) 0.26454 (24) 0.42506 (30) 0.18558 (25) 0.1943 (30) 0.3609 (31) 0.2090 (28) 0.3315 (34) 0.5742 (37)	x/a (σ) y/b -0.00142 (8) -0.12576 0.25952 (27) 0.21177 0.26454 (24) 0.22024 0.42506 (30) 0.41955 0.18558 (25) 0.12088 0.1943 (30) 0.1578 0.3609 (31) 0.3293 0.2090 (28) 0.1735 0.3315 (34) 0.5584 0.5742 (37) 0.3539	x/a (σ) y/b (σ) -0.00142 (8) -0.12576 (8) 0.25952 (27) 0.21177 (27) 0.26454 (24) 0.22024 (23) 0.42506 (30) 0.41955 (27) 0.18558 (25) 0.12088 (25) 0.1943 (30) 0.1578 (28) 0.3609 (31) 0.3293 (29) 0.2090 (28) 0.1735 (27) 0.3315 (34) 0.5584 (35) 0.5742 (37) 0.3539 (34)	x/a (σ) y/b (σ) z/c -0.00142 (8) -0.12576 (8) 0.82102 0.25952 (27) 0.21177 (27) 0.73844 0.26454 (24) 0.22024 (23) 0.46188 0.42506 (30) 0.41955 (27) 0.32852 0.18558 (25) 0.12088 (25) 0.66364 0.1943 (30) 0.1578 (28) 0.8659 0.3609 (31) 0.3293 (29) 0.6581 0.2090 (28) 0.1735 (27) 0.4082 0.3315 (34) 0.5584 (35) 0.1938 0.5742 (37) 0.3359 (34) 0.3072	x/a (σ) y/b (σ) z/c (σ) -0.00142 (8) -0.12576 (8) 0.82102 (6) 0.25952 (27) 0.21177 (27) 0.73844 (21) 0.26454 (24) 0.22024 (23) 0.46188 (18) 0.42506 (30) 0.41955 (27) 0.32852 (21) 0.18558 (25) 0.12088 (25) 0.66364 (20) 0.1943 (30) 0.1578 (28) 0.8659 (26) 0.3609 (31) 0.3293 (29) 0.6581 (24) 0.2090 (28) 0.1735 (27) 0.4082 (23) 0.3315 (34) 0.5584 (35) 0.1938 (30) 0.5742 (37) 0.3539 (34) 0.3072 (28)	Present work x/a (σ) y/b (σ) z/c (σ) x/a -0.00142 (8) -0.12576 (8) 0.82102 (6) -0.0013 0.25952 (27) 0.21177 (27) 0.73844 (21) 0.2607 0.26454 (24) 0.22024 (23) 0.46188 (18) 0.2646 0.42506 (30) 0.41955 (27) 0.32852 (21) 0.4259 0.18558 (25) 0.12088 (25) 0.66364 (20) 0.1836 0.1943 (30) 0.1578 (28) 0.8659 (26) 0.3609 (31) 0.3293 (29) 0.6581 (24) 0.2090 (28) 0.1735 (27) 0.4082 (23) 0.3315 (34) 0.5584 (35) 0.1938 (30) 0.5742 (37) 0.3539 (34) 0.3072 (28)	x/a (σ) y/b (σ) z/c (σ) x/a (σ) -0.00142 (8) -0.12576 (8) 0.82102 (6) -0.0013 (3) 0.25952 (27) 0.21177 (27) 0.73844 (21) 0.2607 (10) 0.26454 (24) 0.22024 (23) 0.46188 (18) 0.2646 (10) 0.42506 (30) 0.41955 (27) 0.32852 (21) 0.4259 (11) 0.18558 (25) 0.12088 (25) 0.66364 (20) 0.1836 (10) 0.1943 (30) 0.1578 (28) 0.8659 (26) 0.3609 (31) 0.3293 (29) 0.6581 (24) 0.2090 (28) 0.1735 (27) 0.4082 (23) 0.3315 (34) 0.5584 (35) 0.1938 (30) 0.5742 (37) 0.3539 (34) 0.3072 (28)	Present workPrevious work x/a (σ) y/b (σ) z/c (σ) x/a (σ) y/b -0.00142 (8) -0.12576 (8) 0.82102 (6) -0.0013 (3) -0.1260 0.25952 (27) 0.21177 (27) 0.73844 (21) 0.2607 (10) 0.2119 0.26454 (24) 0.22024 (23) 0.46188 (18) 0.2646 (10) 0.2203 0.42506 (30) 0.41955 (27) 0.32852 (21) 0.4259 (11) 0.4193 0.18558 (25) 0.12088 (25) 0.66364 (20) 0.1836 (10) 0.1211 0.1943 (30) 0.1578 (28) 0.8659 (26) 0.1836 (10) 0.1211 0.2090 (28) 0.1735 (27) 0.4082 (23) 0.3315 (34) 0.5584 (35) 0.1938 (30) 0.5742 (37) 0.3539 (34) 0.3072 (28) 0.1722 0.1281	x/a (σ) y/b (σ) z/c (σ) x/a (σ) y/b (σ) -0.00142 (8) -0.12576 (8) 0.82102 (6) -0.0013 (3) -0.1260 (1) 0.25952 (27) 0.21177 (27) 0.73844 (21) 0.2607 (10) 0.2119 (2) 0.26454 (24) 0.22024 (23) 0.46188 (18) 0.2646 (10) 0.2203 (2) 0.42506 (30) 0.41955 (27) 0.32852 (21) 0.4259 (11) 0.4193 (3) 0.18558 (25) 0.12088 (25) 0.66364 (20) 0.1836 (10) 0.1211 (3) 0.1943 (30) 0.1578 (28) 0.8659 (26) 0.3609 (31) 0.3293 (29) 0.65811 (24) 0.2090 (28) 0.1735 (27) 0.4082 (23) 0.315 (34) 0.5584 (35) 0.1938 (30) 0.5742 (37) 0.3539 (34) 0.3072 (28) 0.372 (28)		

Table 2. Root-mean-square displacements and direction cosines of the principal axes of the vibration ellipsoids

Data given in parentheses refer to the analysis by DGNS.

	Axis	U_i	$g_i{}^a$	g_{i^b}	gi ^c
	ſ 1	0·1595 (0·1614) Å	0.9848 (-0.9916)	-0.1727(-0.0385)	0.0185 (0.1237)
S	{ 2	0.1846 (0.1789)	-0·1417 (0·1116)	0.7372(-0.7390)	0.6607 (0.6644)
	3	0.2715 (0.2679)	0.1004 (0.0658)	0.6532 (0.6726)	0.7505 (0.7370)
	1	0.1617 (0.1565)	0.9828 (0.9332)	-0.1259 (-0.4490)	-0.1353(-0.0263)
N(1)	{ 2	0.1900 (0.1999)	-0.0222(0.3257)	0.8073 (-0.6860)	0.5897 (0.6506)
	3	0.2793 (0.2757)	0.1835 (0.3102)	0.5765 (0.5726)	0.7962 (0.7589)
	1	0.1578 (0.1674)	0.9700 (-0.8311)	-0.2412 (0.5342)	-0.0301 (0.1550)
N(2)	{ 2	0.1908 (0.1807)	-0.1476(-0.2800)	-0.6829 (-0.6425)	0.7155 (0.7133)
.,	3	0.2416(0.2422)	0.1931 (0.4806)	0.6896 (0.5494)	0.6980 (0.6835)
	1	0.1835 (0.1752)	-0.8224 (-0.7515)	0·5657 (0·6196)	-0.0604 (0.2265)
N(3)	{ 2	0.2051 (0.1964)	-0·3999 (-0·2908)	-0·4992 (-0·6193)	0.7687 (0.7293)
	3	0.2362 (0.2408)	0.4047 (0.5921)	0.6563 (0.4823)	0.6368 (*** 0.6456)
	1	0.1659 (0.1677)	0.9845 (0.8801)	0.0904 (-0.3390)	-0.1505 (0.3324)
С	{ 2	0.1832 (0.1823)	-0.1459 (-0.4692)	0.8980 (-0.5139)	-0.4152 (0.7182)
	13	0.2013(0.2029)	0.0976 (0.0726)	0.4307 (0.7881)	0.8972(0.6113)

(a)

(b)

Fig. 1. Thermal ellipsoids as seen in the plane of the molecule: (a) present work, (b) determination by DGNS.

A minus sign for F_o means 'less than'.

2
1 100° 0 1 2 2 3 4 2 2 2599 2 3 250 2 3 2 2 20 2 3 2 3 2 2 2 3 2 3 2 2 20 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1007 -1259 -1257 -2575 -277 -27784 -27784 -27784 -27784 -27784 -27784 -27784 -27784 -27784 -27784 -27784 -27784 -27784 -27784 -2789 -278
1 100° 100° 100° 100° 100° 100° 100° 10
k 1 10070 10070 10070 k 10070 10070 10070 10070 10070
$ \begin{array}{c} k & k & 1 & 1000 & 1000 \\ 3 & 20 & 5 & 1239 & 336 \\ 2 & 0 & 5 & 1039 & 1047 \\ 2 & 0 & 5 & 1039 & 1047 \\ 2 & 0 & 5 & 1039 & 1047 \\ 2 & 0 & 5 & 1039 & 1047 \\ 2 & 0 & 5 & 1039 & 1047 \\ 2 & 0 & 5 & 1038 & 1047 \\ 2 & 0 & 7 & 233 & -240 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 2507 \\ 2 & 1 & 1 & 1505 & 207 \\ 2 & 1 & 1 & 1505 & 207 \\ 1 & 1 & 1 & 1505 & 207 \\ 1 & 1 & 1 & 1505 & 207 \\ 1 & 1 & 1 & 1505 & 207 \\ 1 & 1 & 1 & 1505 & 207 \\ 1 & 1 & 1 & 1505 & 207 \\ 1 & 1 & 1 & 1505 & 207 \\ 1 & 1 & 1 & 1055 & 9 \\ 1 & 1 & 5 & 1155 & 9 \\ 1 & 1 & 5 & 1055 & 9 \\ 1 & 1 & 5 & 1055 & 1055 \\ 1 & 1 & 5 & 1055 & 1052 \\ 1 & 1 & 5 & 1055 & 1057 \\ 1 & 1 & 5 & 1055 & 1057 \\ 1 & 1 & 5 & 1055 & 1057 \\ 1 & 1 & 5 & 1057 & 1057 \\ 1 & 1 & 1077 & 1 & 1077 \\ 1 & 1207 & 1 & 1207 \\ $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 3 (cont.)

h	k	1	100%	1007	h	k	1	100	•	100Fc	h	x	1	10070	100Fc	h	k	1	10070	1007 _c	h	k	1	1007	100Fc	h	k	ı	10070	100Fc	h	k	1	1007	100Fc
4	٦	6	304	-296		1	7	12	•	-140			7	122	125			Ŧ	\$20	8.24		3		81-	- 19				4.80	- 5 76	6	n	ŧ		e n
		-	0.7	100	- 1	- 7	÷					2	- 1			- 1						÷	÷		- ,,,	- 1		1		- , , 0		ž	ż.		
- 2	÷	6		-102	- 7	- 2	3	- 20	?	-192	- 1	2		412	435	2		1	402	-403	2	- 1	- 1	- y i	-10	2		2	397	- 368	2		<u>۴</u>		- 3 3
- 2	÷.		400	-401	- 1	- 3	2	20	2	-2/3		•		390	-403	2		3	100	177	2	- 2	- 4	318	-315	?	- 2	4	/6	70		1	0	2/9	883
-	3	1	230	24/	-	-		10	1	62	4	7.	5	88	54	•	1	3	78-	-29	- 5	3	- 2	175	-159	5	- 1	3	63-	21	•	1	1	83	-80
4	3	1	164	-148	- 4	•	0	19	9	-186	4	7	3	473	-470	- 5	1	3	311	317	•	3	- 1	671	663	•	- 4	4	107-	9	6	1	٩.	146	136
4	3	2	89	94	- 4	- 5	1	- 44	0	446	4	7	4	581	-589	5	1	4	86-	37	5	ž	- 5	76-	0	5	5	٥	462	-475	6	1	5	348	-347
4	3	3	241	223	- 4	5	- ī	14	2	-632	- 4	1	5	36 3	372	•	1	- 4	543	-520	5	з	0	285	-263	5	5	1	300	301	6	1	3	135	127
4	٦.	4	170	173	- 4	5	2	- 44	8	439	4	7	6	388	397	•	1	5	215	189	5	3	1	620	-626	5	5	2	686	659	6	٦.	٦.	79-	-58
4	3	3	228	229	4	5	3		8-	53	4	7	7	535	521	5	ī	Ū	370	372	5	3	ī	101	86	- 5	5	3	90-	74	6	ĩ	3	313	- 306
4	5	χ.	565	- 222	4	5	4	29	6	302	4	ż	8	296	-291		1	1	153	114		- ī	2	62-	-4	- ŝ.		4	482	-456	6	2	o	88-	20
4	3	7	119	-110				115	2	-1161		ż		621	-581	ŝ	- 1	1	194	-196		i	5	489	472	- ś.	ŝ		210	-225	6	2	1	281	-277
Å.	à.	ò	571	-493			i.			-228		Â		401	408		÷	· .	- 40	64		ñ	5	128	124	í.	÷	á	94	-146	Ă	5	Ť	210	225
,	à.	1	5.02	-530	Å				÷	553		Å	á	441	428		÷	- 5	188	-189	÷.	5		646	640	í.	÷	7	104	110	Ā	5		145	-117
		÷		- 3134					:	474	- 7					ć	÷	÷.		- 1-15	÷.			174	-183	- 4	1	5	182	175	ž		5	108-	
- 2	2				- 1	÷	ż				- 7		- 2				÷.	-		-125		. :	2		-102	- 2	2	1	1 10	373	ž	1			-030
- 7	2	÷		343		- 2			4		- 2			202	- 79 3	2	÷.	- 2	213	220	- ?	÷	-		-403	2	2	3	139	-135	2			203	-270
1	1	1	321	134	- 1	- 2	- 4		2	40	2	0		214	34/	?		2	224	245	?	÷	- 1	99-	-31	?	2	2	691	-1.94	2	3	2	120	-114
4	1	.1	504	MOY	- 4	- 2	- 1	12	4	126	•	0	1	69-	-2	2	2	0	147	125	•	- 3	- 2	81-	13	?		2	72	- > >	•	3	3	93-	-60
- 4	4	4	192	394	- 1	- 2		12	7	134	•	0	1	189	186	•	3	-1	554	-536	•	3	- 2	79-	47	•	6	6	92	100	6	3	3	91	50
4	4	•	808	-744	- 4	- 3	6	10	ካ –	98	•	υ	2	146	-151	5	2	1	308	314	- 5	_ 2	- 1	217	222	- 5	6	7	556	544	6	3	4	412	422
4	4	t.	706	-644	- 4		7	1	8-	42	5	υ	ž	540	-553	5	2	2	642	-632	5	3	- 5	77-	14	5	7	4	532	-509	6	4	1	86	-66
4	4	7	269	270	4		1	5	8	560	5	υ	3	125	-116	5	2	2	475	462	5	- 4	υ	422	-417	•	7	5	97	62	6	4	5	396	170
4	4	ĸ	296	280	4	- 6		5	9	516	5	υ	3	80-	- 24	5	2	3	521	496	5	4	1	95-	41	5	7	6	483	467	6	4	3	239	231
4	4	J.	44-	-28	4	6		4		-427	Ś	υ	4	159	-150		2	- 3	114	-114	5	4	ī	401	- 199	5	7	7	321	322	6	4	4	124	-111
	ä	÷.	241	-255					5	-714		ō	1	269	-244		2	Ā	281	282	÷.	4	2	211	218	6	ò	ò	111-	101	6	4	1	190	200
- 2	1	÷				2			1		ć	ĩ	- 2		. 74		-		72-	-6		2	5	21.8	224	š		ĩ	171	172	ň	ĩ	4	190	- 164
	- 2	-		164	2	5				-110	?			74	- /-		- 5	2		-0		- 2	2	8.40		•	0		.,,	• / •		1	-		
4		1	427	421					~	341	``		'	/1.	- 25	2		U	41	<i>2</i> 5	,		-	243											

Table 4.	Bond	distances	and	angles	: in	the	molecule	of
		thiose	mica	rbazid	e			

		Previous work
	Present work	(DGNS)
SC	1·707 (2) Å	1·685 (5) Å
CN(1)	1.316 (3)	1.313 (6)
C - N(2)	1.326 (2)	1.337 (6)
N(2) - N(3)	1.411 (2)	1.399 (6)
S - C - N(1)	122.0 (0.1)°	119·7 (0·3)°
SCN(2)	119.2 (0.2)	121.5 (0.3)
N(1)-C - N(2)	118.8 (0.2)	118.8 (0.4)
C - N(2) - N(3)	121.1 (0.2)	122.5 (0.4)

N(3)S ⁱⁱ	3·816 Å	N(3)S ^{iv}	3•514 Å
$H(3, 2) - S^{11}$	2.97	$H(3,1)-S^{iv}$	2.65
$H(3,2) - N(3) - S^{ii}$	28·9°	H(3,1)-N(3)-S ^{iv}	11•1°

Atoms belonging to different asymmetric units are labelled as follows:

Superscripts	Coordinates
none	x, y, z
i	$\bar{x}, \bar{y}, 1-z$
ii	$1 - x, \bar{y}, 1 - z$
iii	$\bar{x}, \bar{y}, 2-z$
iv	x, 1+y, z-1
v	1-x, 1-y, 1-z

pair of the N(3) atom must lie in it, and must interact with the H(1,2) and H(1,2^v) atoms in a double system of centrosymmetrical bifurcated hydrogen-bonds as shown in Fig. 2. This interpretation is supported also by a calculation carried out assuming the N(3) atom to have four $s^n p^m$ hybrid orbitals in such a way that three of them are directed towards N(2), H(3,1), H(3,2) and the fourth is determined by the orthogonality condition. The lone pair orbital is found to lie in the molecular plane making an angle of 109.7° with respect to the N(2)-N(3) direction so that it points to the centre of the dimer formed by two centrosymmetrical molecules, and overlaps, to the same extent the two H(1,2)and $H(1,2^{v})$ hydrogen atoms. [The authors are indebted to Professor L. Oleari (Istituto di Chimica Fisica, Università di Parma) who kindly performed the calculation]. This is indicated also by the values of the two distances $N(3) \cdots H(1,2) = 2.34$ Å and $N(3^v) \cdots H(1,2)$ =2.39 Å which are practically equal and significantly shorter than the sum of the van der Waals radii for H and N (2.70 Å). Fig. 3 shows the NH \cdots S linkages:

$N(1) \cdots S^{iii}$	3•409 Å	$N(2) \cdots S^i$	3∙359 Å
$H(1, 1) \cdots S^{iii}$	2.55	$H(2,1)\cdots S^{i}$	2.54
S ⁱⁱⁱ -N(1)-H(1,	1)11·1°	$S^{1}-N(2)-H(2,$	1)8∙4°

which form two-dimensional arrangements parallel to $(1\overline{10})$. These arrangements are joined together by hydrogen bonds involving N(3):

 Table 5. Bond distances and angles involving H atoms in the molecule

The corrected values are calculated following Busing & Levy (1964).

		Riding	Upper
	Found	model	bound
N(1) - H(1,1)	0∙88 Å	0∙92 Å	0∙97 Å
N(1) - H(1,2)	0.86	0.88	0.93
N(2) - H(2,1)	0.83	0.86	0.90
N(3) - H(3,1)	0.89	0.91	0.97
N(3) - H(3,2)	0.86	0.89	0.94
C - N(1) - H(1,1)	119.1 (1.	•5)°	
C - N(1) - H(1,2)	119.4 (1-	·4)	
H(1,1)-N(1) - H(1,2)	121.4 (2-	·1)	
C - N(2) - H(2,1)	119.8 (1-	·0)	
N(3) - N(2) - H(2,1)	119.0 (1-	·0)	
N(2) - N(3) - H(3,1)	107.5 (1-	•5)	
N(2) - N(3) - H(3,2)	105.3 (1-	•7)	
H(3,1)-N(3) - H(3,2)	108.1 (1-	•7)	

The authors are greatly indebted to Professor E.C. Lingafelter of the University of Washington for help and advice. This investigation was supported in part by the Consiglio Nazionale delle Ricerche (Roma) and in part by the U.S. National Science Foundation under Grant GP-5795.

Fig.2. Arrangement of two centrosymmetrical molecules with respect to $\overline{I}(\frac{1}{2}\frac{1}{2}\frac{1}{2})$.

Fig.3. Diagrammatic projection of the structure along [100].

References

- BUSING, W. R. & LEVY, H. A. (1964). Acta Cryst. 17, 142.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- DOMIANO, P., FAVA GASPARRI, G., NARDELLI, M. & SGARABOTTO, P. (1969). Acta Cryst. B25, 343.

HAMILTON, W. C. & IBERS, J. A. (1968). Hydrogen Bonding in Solids, p. 66. New York: Benjamin.

- STEWART, J. M. (1964). Crystal Structures Calculations System, X-ray 1963, for IBM 709/7090/7094. Technical Report TR-64-6, Univ. of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.